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Association Rules are a 
popular data mining
technique, e.g. for warehouse
basket analysis: „Which items
are frequently bought
together?“

Association Rules in a Nutshell

#(swimming+hiking parks) / 
#(swimming parks)

#(swimming+hiking parks) / 
#(all parks)

Toy Example:
Which activities can be
frequently performed together
in National Parks in California?

National Parks 
in California

{Swimming}   → {Hiking}                       

conf = 100 %,   supp = 10/19 
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Observation:

The rules

{ Boating }  → { Hiking, NPS Guided Tours, Fishing }

{ Boating, Swimming }  → { Hiking, NPS Guided Tours, Fishing }

have the same support and the same confidence,

because the two sets

{ Boating }  and  { Boating, Swimming }

describe exactly the same set of parks.

Conclusion:

It is sufficient to look at one of those sets!

→ faster computation

→ no redundant rules
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1
2
3

a b c e

Another Toy
Example:

Unique represen-
tatives of each class:

the closed itemsets

(or concept intents).

(6 instead of 16)

The space of (potentially
frequent) itemsets:          
the powerset of { a, b, c, e }

Classes of itemsets describing the same sets of objects
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Our task:
Find a basis of rules, i.e., a 
minimal set of rules out of which all 
other rules can be derived.

Classical Data Mining Task:
Find, for given minsupp, minconf ∈
[0,1], all rules with support and 
confidence above these thresholds.

Bases of Association Rules

Two-Step Approach:

1. Compute all frequent itemsets
(e.g., Apriori).

2. For each frequent itemset X
and all its subsets Y:

check  X → Y.

Two-Step Approach:

1. Compute all frequent closed
itemsets.

2. For each frequent closed itemset X
and all its closed subsets Y:

check  X → Y.
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Our task:
Find a basis of rules, i.e., a 
minimal set of rules out of which all 
other rules can be derived.

Two-Step Approach:

1. Compute all frequent closed
itemsets.

2. For each frequent closed itemset X
and all its closed subsets Y:

check  X → Y.

Association Rules and Formal Concept Analysis

Based on Formal Concept Analysis 
(FCA).

This relationship was discovered
independently in 1998/9 at

• Clermont-Ferrand (Lakhal)

• Darmstadt (Stumme)

• New York (Zaki)

with Clermont being the fastest group
developing algorithms (Close).
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Our task:
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other rules can be derived.
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1. Compute all frequent closed
itemsets.

2. For each frequent closed itemset X
and all its closed subsets Y:
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This relationship was discovered
independently in 1998/9 at
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• Darmstadt (Stumme)

• New York (Zaki)

with Clermont being the fastest group
developing algorithms (Close).

Structure
of the Talk:

• Introduction to FCA

• Conceptual Clustering with FCA

• Mining Association Rules with FCA

• Other Applications of FCA

This is joint work with
L. Lakhal, Y. Bastide, 
N. Pasquier, R. Taouil.
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Formal Concept Analysis

arose around 1980 in Darmstadt as a 
mathematical theory, which formalizes the
concept of ‚concept‘.

Since then, FCA has found many uses in 
Informatics, e.g. for

• Data Analysis, 

• Information Retrieval,

• Knowledge Discovery, 

• Software Engineering.

Based on datasets, FCA derives concept
hierarchies.

FCA allows to generate and visualize
concept hierarchies.
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Some typical applications:

• database marketing

• email management system

• developing qualitative theories in music estethics

• analysis of flight movements at Frankfurt airport

FCA models concepts as units of thought, consisting of two parts:

• The extension consists of all objects belonging to the concept.

• The intension consists of all attributes common to all those objects.
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National Parks 
in California

Formal Concept
Analysis

Def.:  A formal context
is a  triple (G,M,I), where

• G is a set of objects, 

• M is a set of attributes

• and I is a relation
between G and M.

• (g,m)∈I is read as 
„object g has attribute m“.
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National Parks 
in California

For A ⊆ G, we define

A´:=  { m∈M | ∀g∈A: (g,m)∈I }.

For B ⊆ M, we define dually

B´:=  { g∈G | ∀m∈B: (g,m)∈I }.

A

A´
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Intent B

National Parks 
in California

E
xt

en
t A

Def.:  A formal concept

is a pair (A,B) where

• A is a set of objects
(the extent of the concept), 

• B is a set of attributes
(the intent of the concept),

• A‘ = B and B‘ = A. 

= closed itemset
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National Parks 
in California

The blue concept is
a subconcept of 
the yellow one, 
since its extent is
contained in the
yellow one.

( ⇔ the yellow intent
is contained in the
blue one.)
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National Parks 
in California

The concept lattice of 
the National Parks in 
California
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Def.: An implication
X → Y holds in a context, if
every object having all 
attributes in X also has all 
attributes in Y.

(= Association rule with 100% 
confidence)

• Examples:

{ Swimming }  → { Hiking }

Implications

{ Boating }  → { Swimming, Hiking, NPS Guided Tours, Fishing }

{ Bicycle Trail, NPS Guided Tours }  → { Swimming, Hiking }
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Attributes are
independent if they
span a hyper-cube
(i.e., if all 2n combi-
nations occur).

Example:

• Fishing
• Bicycle Trail
• Swimming

are independent 
attributes.

Independency
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Iceberg Concept Lattices

For minsupp = 85% the seven most general
of the 32.086 concepts of the Mushrooms
database http:\\kdd.ics.uci.edu are shown.

minsupp = 85%
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Iceberg Concept Lattices

minsupp = 85%

minsupp = 70%
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minsupp = 55%

With decreasing
minimum support the
information gets richer.
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Iceberg Concept Lattices and Frequent Itemsets

Iceberg concept lattices are a condensed representation of frequent itemsets:

supp(X) = supp(X‘‘)

Difference between frequent concepts and frequent itemsets in 
the mushrooms database.



Slide 25© Gerd Stumme 2002     Invited Talk at DEXA ‘2

TITANIC

computes the iceberg concept lattice using the support:
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TITANIC

tries to optimize the following three questions:

1. How can the closure of an itemset be determined based on supports only?

2. How can the closure system be computed with determining as few closures as 
possible?

3. How can as many supports as possible be derived from already known supports?
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TITANIC

Example: { b,c }‘‘ = { b, c, e },  since

supp( { b, c } ) = 1/3

and

supp( { a, b, c } ) = 0/3

supp( { b, c, e }  ) = 1/3, 

1
2
3

a b c e

1. How can the closure of an itemset be determined based on supports only?

X‘‘ = X ∪ { x∈ M \ X | supp(X) = supp(X ∪ x )  }
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TITANIC

1. How can the closure of an itemset be determined based on supports only?

X‘‘ = X ∪ { x∈ M \ X | supp(X) = supp(X ∪ x )  }

a

bc

e

1

2

3
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TITANIC

2. How can the closure system 
be computed with determining
as few closures as possible?

We determine only the closures of 
the minimal generators.

• If a set is not minimal generator, 
then none of its supersets is either.

→ Apriori like approach

In the example, TITANIC needs two runs (and Apriori four).

minimal 
generator
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TITANIC

1. How can the closure of an itemset be determined based on supports only?

X‘‘ = X ∪ x∈ M \ X | supp(X) = supp(X ∪ x )  

2. How can the closure system be computed with determining as few closures as 
possible?

Approach à la Apriori

3. How can as many supports as possible be derived from already known
supports?
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3. How can as many supports as possible
be derived from already known supports?

Theorem: If X is no minimal generator, then

supp(X) = min { supp(K) | K is minimal 
generator, K ⊆ X } .

1
2
3

a b c e

Example: supp( { a, b, c } ) 

= min { supp({a, b }), supp({ b, c }), supp(a), 
supp(b), supp(c) }

= min { 0/3, 1/3, 1/3, 2/3, 2/3 }  = 0, 
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TITANIC

1. How can the closure of an itemset be determined based on supports only?

X‘‘ = X ∪ { x∈ M \ X | supp(X) = supp(X ∪ x ) }  

2. How can the closure system be computed with determining as few closures
as possible?

Approach à la Apriori

3. How can as many supports as possible be derived from already known
supports?

If X is no minimal generator, then

supp(X) = min  { supp(K) | K is minimal generator, K ⊆ X } .
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TITANIC

We only generate
candidates for
minimal generators.

If the support is too
low or equal to the
support of a lower
cover, the
candidate is pruned.

compared
with Apriori

End

i  ← 1
i  ← singletons

Determine support for all C ∈ i

Determine closures for all C ∈ i - 1

Prune non-minimal generators from i

i ← i + 1
i  ← Generate_Candidates( i - 1 )

i  
empty?

no

yes

Count only if
necessary.
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Pascal/Titanic compared with Apriori

Weakly correlated data:
similar performance of
Pascal, Apriori and Max-Miner

Strongly correlated data:
Pascal (and Close) are very efficient
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→ more efficient computation (e.g. TITANIC)

→ fewer rules (without information loss!)

32 frequent itemsets are
represented by 12 
frequent concept intents

minsupp = 70%

Advantage of the use of iceberg concept lattices
(compared to frequent itemsets)
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• From supp(B) = supp (B´´ )  follows:

Theorem: X → Y and   X ´´ → Y ´´ have the same support and the same
confidence.

Hence for computing association rules, it is sufficient to compute the supports of all 
frequent sets with B = B´´ (i.e., the intents of the iceberg concept lattice).

Association rules can be visualized
in the iceberg concept lattice:

• exact rules

• approximate rules

conf = 100 %

conf < 100 %
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Association rules can be visualized
in the iceberg concept lattice:

• exact rules

• approximate rules

conf = 100 %

conf < 100 %

Exact association rules



Slide 39© Gerd Stumme 2002     Invited Talk at DEXA ‘2

Exact association rules

supp = 89.92 %

{ring number: one, veil color: white} → {gill attachment: free} 

supp = 89.92 %        conf =  100 %.
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Association rules can be visualized
in the iceberg concept lattice:

• exact rules

• approximate rules

conf = 100 %

conf < 100 %

Luxenburger Basis for approximate association rules
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Luxenburger Basis for approximate association rules

supp = 89.92 %

{ring number: one} → {veil color: white} 

supp = 89.92 %        conf =  97.5 % × 99.9 % ≈ 97.4 %.



Slide 42© Gerd Stumme 2002     Invited Talk at DEXA ‘2

Some experimental results
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Conceptual Email Manager
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The End
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IT-Security Management

8 Supports the analysis of security risks in IT units
8 status quo test for establishing guidelines and checklists
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Database Marketing at Jelmoli AG, Zürich

8 Analysis of the user behavior of customers using the Shopping Bonus Card

8 Supporting of  Cross-Selling via Direct Mailing
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Analysis of flight movements at Frankfurt Airport 

8Allowing for ad-hoc queries in the database

8 Visualization of dependencies
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Conceptual Email Manager

In CEM an email can be
assigned to several „folders“.
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Conceptual Email Manager

This allows for multiple search
paths:

• Darmstadt/KVO/KVO_Members

• KVO/Darmstadt/KVO_Members

• KVO/KVO_Members/Darmstadt

Conceptual Email Manager
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Mails from subfolders can als be
found in the more general
folders.

Conceptual Email Manager

This allows for multiple search
paths:

• Darmstadt/KVO/KVO_Members

• KVO/Darmstadt/KVO_Members

• KVO/KVO_Members/Darmstadt
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Conceptual Email Manager

Nested line diagrams allow the
combination of views.
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