
The OntoManager – a system for the usage-based ontology management

Nenad Stojanovic1, Jens Hartmann1, Jorge Gonzalez3

1 Institute AIFB, University of Karlsruhe,
76128 Karlsruhe, Germany

{nst,jha}@aifb.uni-karlsruhe.de
3 SAP AG*

69190 Waldorf, Germany
jorge.gonzalez@sap.com

* This research was carried out while the author was with the Institute AIFB, University of Karlsruhe

Abstract
 In this paper, we propose an approach for guiding
ontology managers through the modification of an
ontology with respect to users' needs. It is based on the
analysis of end-users' interactions with the ontology-
based applications, which are tracked into the usage-
log. We proposed two types of the analyses: the
ontology evolution and the instance crawling, which
lead to the improvement of the structure of the
ontology and the expansion of the knowledge base,
respectively. The approach has been implemented in
the system called OntoManager. We present here the
conceptual architecture of OntoManager.

1 Introduction
In an ontology-based information portal ontologies
support the process of “indexing” content of an
information resource – so called semantic annotation and
the navigation through the knowledge repository – so
called conceptual navigation. However, ontologies, as a
conceptual model for the given business domain, should
react to all changes in the business environment. This
includes accounting the modification in the application
domain or in the business strategy; incorporating
additional functionality according to changes in the users’
needs; organizing information in a better way etc. If the
underlying ontology is not up-to-date or the annotation of
knowledge resources is inconsistent, redundant or
incomplete, then the reliability, accuracy and
effectiveness of the system decrease significantly
[Stojanovic et al., 2002a] . In order to avoid these real
problems, ontology-based applications have to be
supported by a mechanism for the discovering of these
changes, analyzing and resolving them in a consistent way
[Stojanovic and Stojanovic, 2002].

We have developed such an approach for ontology
management and implemented it in the OntoManager
tool. It concerns the truthfulness of an ontology with
respect to its problem domain - does the ontology
represent a piece of reality and the users' requirements
correctly? Indeed, it helps to find the “weak places” in the

ontology regarding the users’ needs, ensures that
generated recommendations for the ontology
improvement reflect the users' needs, and promotes the
accountability of managers. In this way, the
OntoManager provides an easy-to-use management
system for ontologists, domain experts, and business
analysts, since they are able to use it productively, with a
minimum of the training. As known to the authors, none
of the existing ontology management systems offer
support for (semi-) automatic ontology improvement in
response to the users’ needs analysis.

This paper is organised as follows: Section 2 describes
the conceptual architecture of our approach. In section 3,
we elaborate the modules of the OntoManager enabling
the integration, visualisation and analysis of the users’
needs regarding the domain ontology. After a discussion
of related work, concluding remarks outline some future
work.

2 The conceptual architecture – the MAPE
model
Our management system is realised according to the
MAPE (Monitor Analyse Plan Execute) model [Kephart
and Chess, 2003], which abstracts a management
architecture into four common functions: collect the data,
analyse the data, create a plan of action, and execute the
plan. Indeed, our architecture decomposes the control loop
into four parts:
• Monitor – mechanism that collects, organises and

filters the data about users’ interactions with the
ontology-based application;

• Analyse – mechanism that aggregates, transforms,
correlates, visualises the collected data, and makes
proposals for changes in the ontology;

• Plan – mechanism to structure actions needed to
apply the discovered changes by keeping the
consistency of the ontology. The planning mechanism
uses evolution strategies [Stojanovic et al., 2002a] to
guide its work;

• Execute – mechanism to update the underlying
ontology-based application according to the changes
applied in the ontology.

By monitoring (M) the behaviour of users and
analysing (A) this data, planning (P) which actions should
be taken and executing (E) them, a kind of a “usage loop”
is created.

Figure 1 depicts this “usage loop” in an information
portal scenario. A user is searching for information by
querying and/or navigating through the portal (cf. 1 in
Figure 1). All activities the user performed are acquired in
the Semantic Log (cf. 2), which is structured according to
the Log Ontology, and contains meta-information about
the content of visited pages [Stojanovic et al., 2002a] .
The process of tracking the users’ activities is elaborated
in 0. This log data is aggregated and visualised in the
OntoManager (cf. 3). Moreover, the OntoManager helps
ontology managers discover changes in the ontology,
which are mostly important for enhancing the usability of
the application. The architecture of the OntoManager is
described in the next section in more details. Since the
application of a single ontology change can cause the
inconsistency in the other part of this ontology and all the
artefacts that depend on it [Meadche et al., 2003], we
applied the ontology evolution process (cf. 4) that
guaranties the transfer of the ontology and dependent
artefacts into another consistent state. Moreover, in the
case of creating a new concept, OntoCrawler can be
started to complete that concept with the most promising
instances that can be found in an intranet (or in Internet, in
general).

Request Response

Onto-
Analyses

OntoManager

MM

AA PP

EE

Semantic
Log 2

3

4

1

Domain
ontology

Log Ontology

Ontology Manager

Users

Figure 1 The conceptual architecture of the ontology
management system according to the MAPE model

Finally, since the underlying application is ontology-
based, all changes in the ontology are reflected on the
structure of the portal (cf. 1), by tailoring the portal to the
users’ needs, which implicitly arose. For example, if none
of users were interested in a topic, then the OntoManager
can recommend the ontology manager to remove the
corresponding concept from the topic hierarchy.
Consequently, new users will be not “bored” by browsing
topics, which are useless for the domain shown in the
portal. In that way, our management system aims to be a
user-friendly platform that integrates the results from the

analysis of the usage data with the tools that guide the
process of modifying the ontology.

3 OntoManager
The OntoManager has been designed to provide the

methods and tools that support the ontology managers in
managing and optimising the ontology according to the
users’ needs. This system incorporates mechanisms that
assess how the ontology (and by extension the
application) is performing based on different criteria, and
then enable to take action to optimise it.

One of the key tasks is to check how the ontology
fulfils the perceived needs of the users. In that way, we
obtain an in-depth view of the users’ perspective on the
ontology and the ontology-based application, since on the
top of this ontology the application is going to be
conducted. The technique that can be used to
evaluate/estimate the users’ needs depends on the
information source. By tracking users’ interactions with
the application in a log file, it is possible to collect useful
information that can be used to assess what the main
interests of the users are. In this way, we avoid asking the
users explicitly, since they tend to be reluctant to provide
the feedback via filling questionnaires or forms.

In the rest of this section, we firstly describe the inputs
into the OntoManager, and afterwards the structure of the
OntoManager itself.

3.1 Inputs
The OntoManager has two inputs: the domain ontology
that is the backbone of the whole system and the Semantic
Log (i.e. Semantic Logs in case a portal is distributed on
various web servers, see section 3.2.1).
The description of the model of the ontology we use can
be found in [Stojanovic, 2003]. Here we present only the
Semantic Log.

Semantic Log
Traditionally, all the activities of users of a portal are
captured in the standard web server log. However, the
standard web server log fails in the case of reloading
pages from cash and spider’s crawling, which cause
missing, redundant or incomplete data. Moreover, this log
file contains only the information about the address of
visited pages, which was not enough for the sophisticated
analyses we intended to perform. For example, it is not
possible to get the information about which query is
posted and how many and which results are retrieved.
What we need is the information about the semantics of
the visited pages. In order to resolve these problems, we
do not use traditional web server logs, but rather the
application-based logging, so that each user’s activity is
captured on the level of the application 0. To enhance the
quality of the logged information, we have developed the
Log Ontology as the backbone for structuring information
in a Semantic Log. Each user’s activity is captured in a
Semantic Log in the form of instances of the Log
Ontology.

A part of the Log Ontology that is relevant for the rest
of this paper is presented in 0a. This ontology models
what happens in the portal and why, when, by whom, how
it is performed. Each user’s activity is represented as an
instance of one of the subconcepts of the “Event” concept.

The structure of the hierarchy of event types reflects the
users’ activities in an ontology-based portal by including
all possible types of interactions (e.g. “Query”, “Browse”,
“Read”, etc.). Some additional information, such as the
“date” and “time” of the activity, as well as the identity of
the user may be associated through appropriate relations.
The information enabling the support for the users’
profiling, such as “sessionID”, “clientIP” etc. may also be
included. Entities from the domain ontology are related to
instances of the “Event” concept through the “relatedTo”
relation. The dependency between events is represented
using the “previousEvent” relation.

Data Integration Module
The Data Integration Module has three main
functionalities:
• to collect data from different, possibly distributed

logs in case an ontology-based application is
deployed on several web servers;

• to pre-process data by transforming disparate data
into meaningful information. This phase also covers
the cleaning and validation of the data for achieving
the required quality;

• to organise them in a way that enables a fast and
efficient access to the data.

0b shows several users’ activities stored in the
Semantic Log. They are the result of the user’s request for
“Projekt” and successively browsing activities through the
concept “Project” and its subconcept “EUProject”. The
instance “Query100” captures all important information
regarding the query activity, whereas the instances
“Broswe123” and “Browse456” correspond to the
navigation activities through the hierarchy of the concept
“Project”. Note that “dom#” denotes the namespace of
the domain ontology.

In order to integrate data from various servers, we
replicate the Semantic Logs of all these servers into a
“common” log, so called OntoLog. Since all logs are
based on the Log Ontology and they reference the same
domain ontology, the semantic heterogeneity problem
doesn’t occur. Another possibility for the integration was
to integrate the logs virtually (on-the-fly) by accessing
them in the time of processing. Such a solution would
enable the immediate visibility (actuality) of log data in
the OntoManager, but it requires extensive distribute
processing and, thus, it is slow and expensive. Since the
analyses we want to perform are statistic-based, the
actuality of the data is not so critical. However, the update
of the OntoLog is performed periodically (currently once
per week).

a)

Moreover, during this phase, the data is also pre-
processed, in order to make it better suited for the further
analysis. We perform two types of data pre-processing:
1. Data abstraction - Since the interaction of the users

with the portal is mainly done on the level of
ontology instances, the Semantic Logs (and
consequently the OntoLog) mainly contain the
information about the usage of ontology instances.
For example, if a user has seen more details about the
project “SemIPort”, the log file recorded this
information explicitly. However, the goal of our
system is to improve the ontology and not its
knowledge base. Thus, all log entries regarding
ontology instances have to be transformed into
corresponding ontology concepts. Regarding the
previous example, all the appearances of the instance
“SemIPort” in the OntoLog have to be replaced with
the concept “Project”;

b)

Figure 2. A part of the Log Ontology and the Semantic Log. (a)
The conceptual structure of the Log Ontology is represented in
the left part. (b) The right part shows several log entries in the

form of relation instances.

2. Extracting links - the most important information for
the analyses we want to perform is the frequency of
browsing relations between two concepts (see section
3.2.3). Since the OntoLog does not contain explicit
information about the source and the target of a
browsing event1, we extract it in this pre-processing
phase by analysing successive events. For example,
regarding the part of the log presented in 0b, from
two successive browsing events (“Browsing123” and
“Browsing456”) our system concludes that the link
between concepts “Project” and “EUProject” was
browsed, since the first event is related to the concept
“Project”, and the second one to the concept
“EUProject”.

3.2 Components
Conceptually, the OntoManager consists of three
modules:
• The Data Integration Module that aggregates,

transforms and correlates the usage data;
• The Visualisation Module that makes the integrated

usage data more useful for human beings by
presenting the data in a comprehensible visual form;

• The Analysis Module that provides guidance for
adapting the ontology with respect to the users’
needs.

Subsequently, we describe these three modules in detail. 1 The Log Ontology models the dependency between events through the
relation “previousEvent” (see 0a).

Finally, the integrated and pre-processed data has to be
analysed, in order to enable the ontology manager to
manage the ontology efficiently. However, with
increasing frequency of the application usage, the log
might contain a large quantity of data. Thus, it has to be
reengineered, to enable ontology managers to perform
sophisticated data analysis through a fast access to a
variety of possible views of the underlying information.
Further, in order to get a fast response, it would be useful
to pre-calculate at least some of the information that will
be needed for analysis. Since OLAP techniques [Kimball
and Merz, 2000] typically handle huge volumes of data
that is interrelated in complex ways, and enable the pre-
calculation of everything that may be needed, we decided
to transfer the log into OLAP cubes. In this way, the
OntoLog only contains the pre-processed information
about the users’ interactions, which are needed to improve
the ontology, whereas the OLAP cubes enable the analysis
of this information at an aggregate level.

Indeed, an OLAP cube as a part of the OntoManager
performs various in-advance analyses, in order to speed
up the decision making process. The most important data
is the number of browsing2 the direct hierarchy relation
between two concepts c1 and c2 (denoted as
Usage(c1,c2)) and the number of querying3 for a concept c
(denoted as Querying(c)). By processing the OntoLog,
these values increase. For example, by processing the part
of the Semantic Log presented in 0b, the value of
Usage(“Project”, “EUProject”) and the value of
Querying(“Project”) will be incremented. See section 3.3
for more information about the analyses we perform.

Due to the lack of space, we omit here the detailed
description of the OLAP cube. In the current
implementation, the OLAP cube is queried via a web
service. An advantage of using web service is that it
enables having a thin client that can access the OLAP data
in a remote server without threatening the security of the
server.

The Visualisation Module
Since “information visualisation is the use of computer-
supported, interactive, visual representation of abstract
data to amplify cognition” [Card et al., 1999], the
graphical representations of the ontology-usage data can
help the ontology manager adapt an ontology with respect
to the users’ needs.

In order to achieve that, the Visualization Module
combines graphically (transparently and intuitively) the
integrated ontology usage data with the ontology itself.
Besides, it enables the representation of different aspects
of the underlying information. Finally, it allows for easy
and flexible presentations of the same information in
different ways. By showing different aspects of the
underlying information and in different ways (from one or
more perspectives), the visualisation mechanisms offer
support for analysis tasks.

The presentation of the results of analysis in the form
of tables, histograms, charts or other easily comprehensive
ways can increase the understanding of the usability of the

 2 Browsing is treated as a click on the hyperlink between two concepts

that are in a direct hierarchy relation.
3 The number of queries related to a concept.

ontology entities. On the other way, the requirements put
on visualisation can considerably vary with different
analytical tasks. Thus, the Visualisation Module presents
information in several different ways:
• Graph-based representation of the ontology (see

the left part of the screenshot shown in 0), where
nodes correspond to the concepts in the ontology, and
links correspond to the direct hierarchy (see
Definition 3). It enables:

o easy manipulation with large ontologies. A
lot of visual features are implemented in the
current version: focus on the part of the
ontology (zoom, anti-zoom), rotating the
nodes and lines around a selected node,
adapting the number of hierarchical levels in
the ontology presented on the screen
(locality), tracking the path followed to
reach the current selected node, the
existence of back and forward button to
repeat actions;

o efficient inspection of various “problems”
which can be found in an ontology, i.e. not-
used concept, very sought concepts. In this
version, a suitable colouring is performed as
an indicator of the frequency of using an
ontology concept and its relations;

• Table-based presentation of the results (see the
right part of the screenshot represented in 0). It
enables a comprehensible two-dimensional view on
the data, and supports very fast sorting of data;

• Bar-based presentation (e.g. histogram, Pareto
diagram, etc.) that shows several measures at the
same time by means of a vertical bar. For example,
Pareto diagram4) enables a very easy detection of the
most important concepts, e.g. concepts that take the
most of the users’ attention.

The application of these visual metaphors supports
discovering patterns, trends in the ontology usage data,
and, consequently, leads to the new insights into the
ontology. Indeed, this module digests the result of the data
integration modules and produces the summary reports
easily readable by the ontology managers. The added
value of our visualisation lies in its expressivity. For
example, it is very easy to detect unused concepts. In
addition, the correlation between two concepts is
immediately apparent. The Pareto diagram can show
which concepts take the useful information and which can
be treated as useless.

Figure 3. illustrates some of the above-mentioned
functionalities of the OntoManager. The content is taken
from our evaluation study. This screenshot presents the
inspection of the concept “Project” (cf. 1) and its
subconcepts “EUProject”, “RegionalProject” and
“NationalProject”. The upper left part shows the
hyperlinked path of the concept (i.e. tracking). On the left
panel, a graphical representation of the ontology is
presented, enabling an ontology manager to
traverse/navigate the ontology by clicking on the nodes.
When the information about the usage of the selected
concept is required, a query is submitted to the OLAP via

4 According to the Pareto principle, by analysing 20% of most
frequently used data 80% problems in the ontology can be eliminated.

a right-click button menu. The information about the
number of visitors, visits and times that the sub-concepts
have been accessed is presented in the right-most panels.
The ontology manager can select between querying and
navigation data. The label colour of the nodes will then
change according to some user-defined rules (darker

colour indicates more visits in Figure 3). The coupling
between the structure of the ontology and the aggregated
data enables visual highlighting when an entity has not
been accessed at all (e.g. “RegionalProject” (cf. 2 in
Figure 3)).

2
1

The Analysis Modu
Whereas the Visual
managers with conv
data, the Analysis M
the ontology. The b
management of an o
interest of the user
engineered consider
granularity to most s
or grouping less acc
In particularly, there
• Ontology Evol

process of mod
consistency of
keeps track of t
undo any action

The OntoM
related to th
elaborated i
here more d

• Instance Craw
concept with the
found in an intra

Deleting us
a new appl
on the pres
adding new
knowledge
concepts ar
Therefore,
capabilities
useful inst
about conc
used as bac
process. A
set of ins
semantic re
new con
le
isation M
enient
odule s
asic ass
ntology
s. Thus
ing this
ought-a
essed co
 are two
ution th
ifying
the upd
he chan
 taken u
anager
e ontol
n [Stoja
etails.
ling th
 most p
net

eless co
icable o
ented e
 concep
leak s

e missed
OntoC

 for ide
ances w
epts, re
kground
crawling
tances
levance
cepts

Figure 3. The Visualisation Module in the OntoManager

odule provides the ontology
representations of underlying
uggests them how to improve
umption of our system is that
 should be guided by the real
, the ontology should be re-
 feedback, e.g. adding more
fter concepts by splitting them
ncepts.
 task of the Analysis module:
at provides guidance in the
the ontology and ensure the
ated ontology. This module
ges and has the possibility to
pon the ontology.
 imports the functionalities
ogy evolution process that we
novic et al., 2002a] . We omit

at complete newly created
romising instances that can be

ncepts in an ontology leads to
ntology by some steps based
volution strategies. However,
ts to an ontology leads to a
ince instances of the new
.
rawler provides semantic
ntifying and extracting new
hereby existing knowledge

lations and instances can be
 knowledge for the crawling
 process results in an ordered

weighted by their assumed
. Thus, it is possible to add
within OntoManager to

differentiate an actual knowledge state and then
to use OntoCrawler to fill these concepts.
The crawling process [Ehrig, 2002], [Schmitz,
2002] uses the domain ontology which represents
specific domain knowledge and a World
ontology which describes the environment in
which the knowledge is kept. In this example, the
World ontology consists of information about
hosts, IP-adresses, hyperlinks, etc. In the
crawling process new documents are analysed
and a semantic relevance for the crawl-task is
calculated. This relevance is used to focus the
search on potentially highly-relevant instances.

4 Related Work
In [Stojanovic L. et al., 2002b] we made a comprehensive
evaluation of most frequently used tools for editing
ontologies, Protege5, OilEd6 and OntoEdit7, by comparing
them regarding several criteria, including their support for
the continual ontology improvement. None of them
provides support neither for the integration of the usage
data into the ontology evolution process nor for the
discovery of changes in an ontology, which are crucial
facilities of the OntoManager. Therefore, these
capabilities of the OntoManager are novel in comparison
to the existing ontology editors.

Moreover, the OntoManager is a tool for a
comprehensive management of the ontology-based
applications, which incorporates the collection, the
integration and the analysis of the data needed for the
management. In that way, the OntoManager is a unique
tool, since, as known to the authors, such a management
tool for ontology-based applications does not exist.
However, there are management systems for other types

5 http://protege.stanford.edu/
6 http://oiled.man.ac.uk/
7 http://www.ontoprise.de/com/co_produ_tool3.htm

of the applications, which can be related to our work. For
example, an approach for managing changes in a
knowledge management (KM) system is given in [12].
The authors consider two types of changes: (i) functional
changes that are about new KM-systems in the
organization, new versions of a KM-system and new
features in one KM-system and (ii) structural changes that
deal with new business models, new subsidiaries and new
competencies in the organisation. The results of that study
show that managing the evolution of KM-systems on an
ad hoc basis can lead to unnecessary complexity and KM-
systems failures. Both types of changes can be treated as
the explicit changes, which can be very efficiently
resolved in our system. However, contrary to the
OntoManager, this approach does not consider implicit
changes, which can be derived from the usage of the
system.

5 Conclusion
The possibility to cope with the implicit changes

discovered from the users’ behaviour seems to be the most
important characteristic of an application, which aspires to
be useful. Indeed, it enables the continual adaptation of an
application to the changes in the users’ needs, without
demanding the users to provide an explicit feedback about
the usability of the application. The most common
attribute for discovering changes is the usage of some
structures (buttons, options in the menu, etc.), whose
analysis enables their fine-tuning to the users’ needs.

In an ontology-based application, the domain ontology
is used as a conceptual backbone for structuring the
domain information provided in the application.
Consequently, the data about the usage of the application
can be analysed using the ontology as the background
knowledge, which alleviates the process of discovering
useful changes in the application. The discovered changes
lead to the improvement of the ontology, but in the end
effect, since the content and layout (structure) of an
ontology-based application are based on the underlying
ontology, by changing the ontology according to the
users’ needs, the application itself is tailored to the users’
needs.

In this paper, we presented an integrated approach for
the usage-based management of the ontology-based
applications, which covers capturing and structuring the
users’ activities with the application, their integration and
filtering, then the visualisation of the usage data in the
context of the underlying ontology and, finally, the
automatic discovery of changes and their systematic
resolution by ensuring the consistency of the resulting
ontology. The approach has been implemented in the
system called OntoManager, a user-friendly platform that
integrates the results from the analysis of the usage data
with the tools that guide the process of modifying the
ontology. The focus of this paper was on the conceptual
architecture of the system. The evaluation of the analyses
we proposed is out of the scope of the paper. However, we
tested the performance of the system, particularly in
discovering anomalies in a hierarchy in the domain
ontology. This early evaluation study shows the benefits,
in time and correctness with respect to ad hoc methods, of
supporting the ontology management by our approach.

Acknowledgement
The research presented in this paper would not have been
possible without our colleagues and students at the Institute
AIFB and the FZI, University of Karlsruhe. Research for this
paper was partially financed by BMBF in the project “SemIPort”
(08C5939) and by EU in the IST-2000-28293 project
“Ontologging”.

References

[Stojanovic L. et al., 2002a] L. Stojanovic, A. Maedche, B.
Motik, and N. Stojanovic. User-driven Ontology
Evolution Management, Proceedings of the 13th European
Conference on Knowledge Engineering and Knowledge
Management EKAW’02, Madrid, 2002.^
[Stojanovic and Stojanovic, 2002] N. Stojanovic and L.
Stojanovic. Usage-oriented Evolution of Ontology-based
Knowledge Management Systems, Proceedings of the 1st
Int'l Conf. on Ontologies, Databases and Application of
Semantics (ODBASE-2002), Irvine, CA, 2002.
[Kephart and Chess, 2003] J. Kephart and D. Chess, The
Vision of Autonomic Computing, IEEE Computer, January
2003., pp. 41-50.
[Stojanovic N. et al., 2002] N. Stojanovic, L. Stojanovic
and J. Gonzalez, On Enhancing Searching for Information
in an Information Portal by Tracking Users’ Activities,
First International Workshop on Mining for Enhanced
Web Search (MEWS 2002), held in conjunction with
WISE 2002, Singapore, 2002.
[Meadche et al., 2003] A. Maedche, B. Motik, L.
Stojanovic, R. Studer and R. Volz, Ontologies for
Enterprise Knowledge Management, IEEE Intelligent
System, pp. 26-34, March/April 2003.
[Stojanovic, 2003] N. Stojanovic, On the Query
Refinement in the Ontology-based Searching for
Information, the 15th Conference On Advanced
Information Systems Engineering, CAiSE’03, Austria,
2003.
[Kimball and Merz, 2000] R. Kimball and R. Merz, The
Data Webhouse Toolkit: Building the Web-Enabled Data
Warehouse, John Wiley & Sons, 2000.
[Card et al., 1999] S. Card, J. Mackinlay and B.
Shneiderman, Readings in Information Visualization:
Using Vision to Think, Morgan Kaufmann, 1999.
[Ehrig, 2002] M. Ehrig, Ontology-focused Crawling of
Documents and Relational Metadata, Masters Thesis,
University of Karlsruhe, 2002
[Schmitz, 2002] C. Schmitz, Untersuchung der
Graphstruktur von Web-Communities am Beispiel der
Informatik, Masters Thesis,University of Trier, 2002
[Stojanovic L. et al., 2002b] L. Stojanovic, B. Motik,
Ontology Evolution within Ontology Editors,
EKAW’02/EON Workshop, Madrid, 2002.
[Hardless et al., 2000] C. Hardless, R. Lindgren, U.
Nulden, K., Pessi, The Evolution of knowledge
management system need to be managed,
http://www.viktoria.informatik.gu.se/groups/
KnowledgeManagement/Documents/kmman.pdf, 2000.

	Semantic Log
	Data Integration Module
	The Visualisation Module

