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Abstract. Folksonomy data is relational by nature, and therefore methods that
directly exploit these relations are prominent for the tag recommendation prob-
lem. Relational methods have been successfully applied to areas in which en-
tities are linked in an explicit manner, like hypertext documents and scientific
publications. For approaching the graph-based tag recommendation task of the
ECML PKDD Discovery Challenge 2009, we propose to turn the folksonomy
graph into a homogeneous post graph and use relational classification techniques
for predicting tags. Our approach features adherence to multiple kinds of rela-
tions, semi-supervised learning and fast predictions.

1 Introduction

One might want tag recommendations for several reasons, as for example: simplifying
the tagging process for the user, exposing different facets of a resource and helping
the tag vocabulary to converge. Given that users are free to tag, i.e., the same resource
can be tagged differently by different people, it is important to personalize the recom-
mended tags for an individual user.

Tagging data forms a ternary relation between users, resources and tags, differently
from typical recommender systems in which the relation is usually binary between users
and resources. The best methods presented so far explore this ternary relation to com-
pute tag predictions, either by means of tensor factorization [8] or PageRank [3], on the
hypergraph induced by the ternary relational data. We, on the other hand, propose to
explore the underlying relational graph between posts by means of relational classifica-
tion.

In this paper we describe our approaches for addressing the graph-based tag rec-
ommendation task of the ECML PKDD Discovery Challenge 2009. We present two
basic algorithms: PWA* (probabilistic weighted average), an iterative relational clas-
sification algorithm enhanced with relaxation labelling, and WA * (weighted average),
an iterative relational classification method without relaxation labelling. These meth-
ods feature: adherence to multiple kinds of relations, training free, fast predictions, and
semi-supervised classification. Semi-supervised classification is particularly appealing
because it allows us to evtl. benefit from the information contained in the test dataset.
Furthermore, we propose to combine these methods through unweighted voting.



The paper is organized as follows. Section 2 presents the notation used throughout
the paper. In Section 3 we show how we turned the folksonomy into a post relational
graph. Section 4 introduces the individual classifiers and the ensemble technique we
used. In Section 5 we elaborate on the evaluation and experiments conducted for tuning
the parameters of our models, and report the results obtained on the test dataset released
for the challenge. The paper closes with conclusions and directions for future work.

2 Notation

Foksonomy data usually comprises a set of users U, a set of resources R, a set of tags
T, and a set Y of ternary relations between them, i.e., Y CU x R x T.
Let
X :={(u,r) |3t eT: (u,rt)eY}

be the set of all unique user/resources combinations in the data, where each pair is called
a post. For convenience, let T'(x = (u,r)) := {t € T' | (u,r,t) € Y} be the set of all
tags assigned to a given post x € X. We consider train/test splits based on posts, i.e.,
Xirain, Xtest C X disjoint and covering all of X:

XtrainUXlesl =X

For training, the learner has access to the set Xy.i, of training posts and their true
tags 7’| x,.,,- The tag recommendation task is then to predict, for a given & € Xeq, a set

T'(xz) C T of tags that are most likely to be used by the resp. user for the resp. resource.

3 Relation Engineering

We propose to represent folksonomy data as a homogeneous, undirected relational
graph over the post set, i.e., G := (X, E)) in which edges are annotated with a weight
w : X x X — R denoting the strength of the relation. Besides making the input data
more compact — we have only a binary relation R C X x X between objects of the same
type — this representation will allow us to trivially cast the problem of personalized tag
recommendations as a relational classification problem.

Relational classifiers usually consider, additionally to the typical attribute-value data
of objects, relational information. A scientific paper, for example, can be connected to
another paper that has been written by the same author or because they share common
citations. It has been shown in many classification problems that relational classifiers
perform better than purely attribute-based classifiers [1, 4, 6].

In our case, we assume that posts are related to each other if they share the same
user: Ryser := {(x,2') € X x X |user(x) = user(x’)}, the same resource: Ryes :=
{(z,2") € X x X|res(x) = res(z’)}, or either share the same user or resource:
RIS, = Ruser U Ryes (see Figure 1). For convenience, let user(z) and res(z) denote
the user and resource of post = respectively. Thus, each post is connected to each other
either in terms of other users that tagged the same resource, or the resources tagged by
the same user. Weights are discussed in Section 4.



Fig. 1. Ryser (top left), Reres (bottom left) and Ry, (right) of a given test post (nodes in grey)

Note that it may happen that some of the related posts belong themselves to the
test dataset, allowing us to evtl. profit from the unlabeled information of test nodes
through, e.g., collective inference (see Section 4). Thus, differently from other ap-
proaches (e.g., [3, 8]) that are only restricted to X, we can also exploit the set Xeq
of test posts, but of course not their associated true tags.

Now, for a given z € X, One can use the tagging information of related instances
to estimate T(x) A simple way to do that is, e.g., through tag frequencies of related

posts:
'€ Nylt e T
P(tlr) = 17 € |N|€ @M sexter (1)

while N, is the neighborhood of z:

N, :={2' € X|(z,2") e R, T(x) # 0} 2)

In section 4 we will present the actual relational classifiers we have used to approach
the challenge.

4 Relational Classification for Tag Recommendation

We extract the relational information by adapting simple statistical relational methods,
usually used for classification of hypertext documents, scientific publications or movies,
to the tag recommendation scenario. The aim is to recommend tags to users by using the
neighborhood encoded in the homogeneous graph G(X, E). Therefore we described a
very simple method in eq. (1), where the probability for a tag ¢ € T' given a node =
(post) is computed by counting the frequency of neighboring posts 2’ € N, that have
used the same tag ¢. In this case the strength of the relations is not taken into account,
i.e., all considered neighbors of x have the same influence on the probability of tag ¢



given z. But this is not an optimal solution, the more similar posts are to each other the
higher the weight of this edge should be.

Hence, a more suitable relational method for tag recommendation is the
WeightedAverage (WA) which sums up all the weights of posts 2’ € NN, that share the
same tag ¢ € 1" and normalizes this by the sum over all weights in the neighborhood.

Zx'eNzueT(xf) w(z,z')
Y wen, W, ')

Thus, WA does only consider neighbors that belong to the training set.

A more sophisticated relational method that takes probabilities into account is the
probabilistic weighted average (PWA), it calculates the probability of ¢ given x by build-
ing the weighted average of the tag probabilities of neighbor nodes 2’ € N,:

2wen, Wz, ") P(t|z")
Z-’II’EN;E w(x7:r,)

Where P(t|z’) = 1 for 2’ € Xirqin, i-€., we are only exploiting nodes contained
in the training set (see eq. (2)). We will see in the next paragraph how one can exploit
these probabilities in a more clever way. Both approaches have been introduced in [5]
and applied to relational datasets.

Since we want to recommend more than one tag we need to cast the tag recommen-
dation problem as a multilabel classification problem, i.e., assign one or more classes to
a test node. We accomplish the multilabel problem by sorting the calculated probabili-
ties P(t|z) for all z € X,es and recommend the top n tags with highest probabilities.

The proposed relational methods could either be applied on R, i.e., the union of
the user and resource relation or on each relation Ryser, Rres individually. If applied on
each relation the results could be combined by using ensemble techniques.

P(tr) = ©)

P(t|x) = “

4.1 Semi-Supervised Learning

As mentioned before, we would like additionally, to exploit unlabeled information con-
tained in the graph and use the test nodes that have not been tagged yet, but are related
to other nodes. This can be achieved by applying collective inference methods, being
iterative procedures, which classify related nodes simultaneously and exploit relational
autocorrelation and unlabeled data. Relational autocorrelation is the correlation among
a variable of an entity to the same variable (here the class) of a related entity, i.e., con-
nected entities are likely to have the same classes assigned. Collective Classification is
semi-supervised by nature, since one exploits the unlabeled part of the data. One of this
semi-supervised methods is relaxation labeling [1], it can be formally expressed as:

P(t) D = M(P(t|2) %y ) ©)

We first initialize the unlabeled nodes with the prior probability calculated using the
train set, then compute the probability of tag ¢ given x iteratively using a relational clas-
sification method M based on the neighborhood N, in the inner loop. The procedure
stops when the algorithm converges (i.e., the difference of the tag probability between



iteration ¢ and ¢ 4 1 is less than a very small ¢) or a certain number of iterations is
reached.

We used eq. (4) as relational method inside the loop, where we do not require that
the neighbors ' are in the training set, but are using the probabilities of unlabeled
nodes. For PWA this means that in each iteration we use the probabilities of the neigh-
borhood estimated in the previous iteration collectively. PWA combined with collective
inference is denoted as PWA * in the following.

For WeightedAverage we did not use relaxation labeling but applied a so called one-
shot-estimation [5,7]. We did only use the neighbors with known classes, i.e., in the first
iteration we exploit only nodes from the training set, while in the next iteration we used
also test nodes that have been classified in the previous iterations. The procedure stops
when all test nodes could be classified or a specific number of iterations is reached.
Hence, the tag probabilities are not being re-estimated like for the relaxation labeling
but only estimated once. Thus, WA combined with the one-shot-estimation procedure is
denoted as WA*.

4.2 Ensemble

Ensemble classification may lead to significant improvement on classification accu-
racy, since uncorrelated errors made by the individual classifiers are removed by the
combination of different classifiers [2, 6]. Furthermore, ensemble classification reduces
variance and bias.

We have decided to combine WA * and PWA * through a simple unweighted voting,
since voting performs particularly well when the results of individual classifiers are
similar; as we will see in Section 5, WA* and PWA* yielded very similar results in our
holdout set.

After performing the individual classifiers, we receive probability distributions for
each classifier K; as output and build the arithmetic mean of the tag-assignment proba-
bilities for each test post and tag:

1 L
P(tlr) = ¢ > Fitlz), L= |K|Pi(tlx) #0, t€T]| 6)
=1

4.3 Weighting Schemes

The weight w in eq. (3) and (4) is an important factor in the estimation of tag probabil-
ities, since it describes the strength of the relation between x and x’. There are several
ways to estimate these weights:

1. For two nodes (z,x') € Ries, compute their similarity by representing x and z’ as
user-tag profile vectors. Each component of the profile vector corresponds to the
count of co-occurrences between users and tags:

¢ = (|Y N ({wser(z)} x R x {t}))rer



2. Similarly to 1, for two nodes (z,2’) € Ryser the node similarity is computed by
representing x and z’ as resource-tag profile vectors:

¢ = (Y N (U x {res(z)} x {t})eer

3. Similar to 2, but « and z’ are represented as resource-user profile vectors where
each component corresponds to the count of co-occurrences between resources and
users:

¢ = ([Y N ({u} x {res(z)} x T)|)uev

4. The same as in 1, but the node similarity is computed w.r.t. to user-resource profile
vectors:

¢ = (Y N ({user(z)} x {r} x T)|)rer

The edge weight is finally computed by applying the cosine similarity over the
desired profile vectors:

o0 o LED)
sim(@(e), (7)) = [ ot o]

In our experiments we basically used the scheme 1, since there is no new user in the
data and therefore we can always build user-tag profile vectors.

(M

5 Evaluation
All the results presented in this section are reported in terms of F1-score, the official

measure used by the graph-based tag recommendation task of the ECML PKDD Dis-
covery Challenge 2009. For a given x € Xy the F1-Score is computed as follows:

2 - Recall (T(:z:)) - Precision (T(x))

Fl-score (T(x)) = ®

Recall (T(x)) + Precision (T(x))

Although the methods presented in Section 4 usually do not have free parameters,
we realized that Ry and R can have a different impact in the recommendation
quality (cf. Figures 2 and 3), and thereby we introduced a parameter to reward the best
relations in R, by a factor ¢ € N: if R, yields better recommendations than R ger
for example, all edge weights in R, that refer to R, are multiplied by c.

For searching the best ¢ value we performed a greedy search over the factor range
{1,...,4} on a holdout set created by randomly selecting 800 posts from the training
data. Tables 1 and 2 show the characteristics of the training and test/holdout datasets
respectively. Figure 2 presents the results of WA*-Full', i.e., WA * performed over R™,,
for different c values on the holdout set according to the F1-score. We also plot the
results of WA*-Res and WA*-Usr (i.e., WA* on Res and Ryger resp.).

After finding the best c value on the holdout set, we applied WA *-Full, PWA*-Full,

and the ensemble (c.f. eq. 6) to the challenge test dataset (see Figure 3). Note that the

! Since the results of PWA* and WA * are very similar, we just report on WA*.



dawset | [Ul] IR 7] VIl 1X]]
[BibSonomy|1,185[22,389]13,276[253,615[64,406]

Table 1. Characteristics of 2-core BibSonomy.

dataset U] R[] Xtest]]
Holdout 292|788| 800
Challenge test|136(667| 778

Table 2. Characteristics of the holdout set and the challenge test dataset.

results on the challenge test dataset are much lower than those on the holdout set. It may
indicate that either our holdout set was not a good representative of the population or
that the challenge test dataset represents a concept drift. We plan to further investigate
the reasons underlying this large deviation.

According to the rules of the challenge, the Fl-score is measured over the Top-5
recommended tags, even though one is not forced to always recommend 5 tags. This is
an important remark because if one recommends more tags than the true number of tags
attached to a particular test post, one can lower precision. Therefore, we estimate the
number of tags to be recommended to each test post by taking the average number of
tags used by each test user to his resources. If a given test user has tagged his resources
with 3 tags in average, for example, we recommend the Top-3 tags delivered by our
algorithms for all test posts in which this user appears.

6 Conclusions

In this paper we proposed to approach the graph-based tag recommendation task of
the ECML PKDD Discovery Challenge 2009 by means of relational classification. We
first turned the usual tripartite graph of social tagging systems into a homogeneous post
graph, whereby simple statistical relational methods can be easily applied. Our methods
are training free and the prediction runtime only depends on the number of neighbors
and tags, which is fast since the training data is sparse. The models we presented also
incorporate a semi-supervised component that can evtl. benefit from test data. We pre-
sented two relational classification methods, namely WA * and PWA *, and one ensemble
based on unweighted voting over the tag probabilities delivered by these methods.

We also introduced a parameter in order to reward more informative relations, which
was learned through a greedy search in a holdout set.

In future work we want to investigate new kinds of relations between the posts (e.g.

content-based), other ensemble techniques, and new methods for automatically learning
more informative weights.



Parameter tuning on the Holdout Test Data
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Fig. 2. Parameter search of WA *-Full in a holdout set. Best ¢ value found equals 3.5
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